
Framework for Engineering Finite State Machines in Gene
Regulatory Networks
Kevin Oishi* and Eric Klavins

Department of Electrical Engineering, University of Washington, Seattle 98195, United States

*S Supporting Information

ABSTRACT: Finite state machines are fundamental comput-
ing devices at the core of many models of computation. In
biology, finite state machines are commonly used as models of
development in multicellular organisms. However, it remains
unclear to what extent cells can remember state, how they can
transition from one state to another reliably, and whether the
existing parts available to the synthetic biologist are sufficient
to implement specified finite state machines in living cells.
Furthermore, how complex multicellular behaviors can be
realized by multiple cells coordinating their states with
signaling, growth, and division is not well understood. Here,
we describe a method by which any finite state machine can be
built using nothing more than a suitably engineered network of readily available repressing transcription factors. In particular, we
show the mathematical equivalence of finite state machines with a Boolean model of gene regulatory networks. We describe how
such networks can be realized with a small class of promoters and transcription factors. To demonstrate the effectiveness of our
approach, we show that the behavior of the coarse grained ideal Boolean network model approximates a fine grained delay
differential equation model of gene expression. Finally, we explore a framework for the design of more complex systems via an
example, synthetic bacterial microcolony edge detection, that illustrates how finite state machines could be used together with
cell signaling to construct novel multicellular behaviors.

KEYWORDS: finite state machines, gene regulatory networks, multicellular behavior, framework, specification

An engineering framework for f inite state machines (FSMs) in
living cells is crucial scientifically and practically. Naturally
occurring finite state machines control how cells switch states
from stem cells to tissue specific cells according to chemical,
mechanical, and logical cues from their local environments.1−4

However, many questions remain unanswered: How is state
encoded by patterns of gene expression? How are states
stabilized to avoid spontaneous switching? How do state-
specific signals reliably cause transitions between states? Most
importantly, can we build novel finite state machines in
synthetic cells that control the process of differentiation and
development? Here, we present a framework and design
methodology for engineering state control in cells. The design
method is rooted in the rich theory of finite state machines and
sequential logic from computer engineering.5,6 We apply the
method to a variety of examples modeled at different levels of
detail and abstraction: as a Boolean network representation of a
gene regulatory network (GRN), as delay dif ferential equations
(DDEs) modeling a biomolecular implementation of the GRN,
and finally as a 2D multicellular simulation illustrating a
complex microcolony edge detection behavior implemented
from a high-level finite state machine specification.
Finite state machines are a fundamental model of

computation and can be used to represent and reason about
many useful machines including counters, adders, and any other

kind of sequential logic. An FSM can be in any one of a finite
number of states at a given time. An FSM takes as input a string
of symbols that belong to a finite set. Upon the arrival of an
input symbol, the FSM updates its state according to a
transition function that depends on the current state of the
machine and the current input symbol. As a consequence, an
FSM has a memory and may respond differently to the same
input depending on its current state. Although the restriction to
finiteness makes FSMs theoretically less capable than other
computing machines (for example, pushdown automata or
Turing machines), FSMs nevertheless form the basis of most
modern models of computation.7 Additionally, FSMs have been
richly explored and applied to engineering problems in
electronics, computer architecture, and computer science. In
computer science, the FSM formalization is fundamental in
categorizing and understanding the limitations of theoretical
and physical machines that compute.6,8,9 FSMs were
fundamental in shaping the design of modern computers
where state is typically stored in latches or flip-flops.10,11

One of the first forms of finite automata explored in the
literature was a model of nerve cell networks investigated by
theoretical biologists and mathematicians12,13 that was later

Received: November 1, 2013
Published: February 21, 2014

Research Article

pubs.acs.org/synthbio

© 2014 American Chemical Society 652 dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665

pubs.acs.org/synthbio

shown to be equivalent to FSMs.6 Here, we explore to what
extent gene regulatory networks are equivalent to FSMs as well.
In fact, several synthetic biological mechanisms in the literature
have been shown to implement simple finite state machines in
vivo with just a few states. Broadly speaking, these mechanisms
fall into the categories of cells that compute, cells that
remember, and cells that communicate. Simple computation
using Boolean logic has been demonstrated in multiple
organisms with some degree of cascaded modularity.14−17

Genetic toggle switches have been heavily explored as a
mechanism for remembering stimulus events.18−21 Similar
architectures have been used to implement more complex
machines, such as a counter22 and a timer.23 Recently, elements
of simple computation and memory have been combined to
implement all two-input Boolean logic functions in Escherichia
coli and store the result in DNA over the subsequent 90 cell
divisions.24 Synthetic multicellular systems have employed
cell−cell communication mechanisms with simple computing
or memory circuits to implement robust and complex behaviors
such as synchronized oscillation,25 population density control,26

photosensitive edge detection,27 stripe formation,28 and logic
networks.29,30 Although these examples hint at the potential
power of synthetic biology to build arbitrary FSMs in cells, a
general framework31 for the design and of synthesis of any
given FSMa sort of ‘FSM compiler’has yet to emerge.
A framework for engineering finite state machines from

biomolecular parts would enable the design, construction, and
characterization of complex circuits from simple functional
parts. In light of the success of simple synthetic circuits, and the
availability of libraries of new parts, such as CRISPR, TALE,
and Zinc Finger transcription factors,32−36 we pose the
questions: Are these parts sufficient to realize the multistate

behaviors observed in nature? How powerful of a computer can
be made using only transcription factors in a GRN? To answer
these questions, we demonstrate via explicit mathematical
construction that modeled as a Boolean network, GRNs are
exactly as powerful as FSMs. Furthermore, a continuous-time
DDE model of gene dynamics can closely follow the behavior
of the Boolean network model over a range of physically
relevant parameters.
We begin with a brief review of FSMs, providing background

and context for subsequent discussion of biomolecular parts
and models. Next, we introduce the general classes of parts we
use in our biomolecular constructions and present the Boolean
network and DDE models that we use to analyze and simulate
GRNs made from our biomolecular parts. Notably, the
biomolecular gene regulatory parts we consider consist of
only repressing transcription factors. Mathematically, repressing
transcription factors by themselves represent a minimal set of
part types (i.e., an activating relation can be built from two
repressing relations in series). Practically repressing tran-
scription factors may be easier to engineer than activators.
We then present a method for implementing any finite state
machine with a network of suitably wired repressing tran-
scription factors. The correctness and effectiveness of the
construction is then examined assuming the Boolean network
and DDE models for two example systems: a simple two state
machine and a four state modulo-two pulse counter. Finally, we
show how our framework can be used to design a logical
control system for cell fate interfacing various biomolecular
sensors and effectors. We illustrate the approach through the
design and simulation of a bacterial microcolony edge detection
system where cells grow, divide, and dynamically differentiate

Figure 1. Simple two-state machine described as (A) a directed graph representation of a finite state machine, (B) a gene regulatory network made
of repressing transcription factors and inducers, and (C) a biomolecular realization of the same GRN using the parts described in Figure 2. In the
GRN representation orange circles denote transition species, purple circles denote state species, and green circles denote sensor species. In the GRN
and biomolecular realization, the gene network is in state i when species Ri is at a low level expression, and following transition δ(q, σ) when
transition species Tσq is at a high level of expression.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665653

into red fluorescing “edge” cells and nonfluorescing “center”
cells.

■ RESULTS AND DISCUSSION
Finite State Machines. Finite state machines are a well

understood and intuitive model of state control and
computation. A finite state machine is specified by the tuple,

δ= ΣM Q q F(, , , ,)0 (1)

where Q and Σ are finite sets, δ: Q × Σ → Q, q0 ∈ Q, and F ⊆
Q. Q is a set of states, Σ is a set of input symbols, q0 is the unique
start state, δ is a state transition function, and F is a (possibly
empty) set of accepting states. Finite state machines are typically
represented as a directed graph. For example, Figure 1A depicts
a two-state FSM. The set of states Q = {0,1} are represented by
labeled vertexes. The start state q0 = 0 is denoted by the “start”
arrow, and the set of accepting states F = {1} are illustrated as a
double-circled vertex. Edge labels denote the full set of inputs Σ
= {a, b}. The state transition map δ is represented by edges
labeled with a list of input symbols that move the FSM between
states.
The semantics of a finite state machine is then a set of rules

defining its operation specified by M. The FSM takes as input a
finite length sequence of symbols w ∈ Σ* (where Σ* is the
Kleene operator applied to Σ) and determines weather or not
the sequence is in a set of accepted sequences through a series
of state transitions. The FSM begins in the initial state q0. Given
a sequence of inputs w = σ1σ2...σn with σi ∈ Σ for i = 1,2,...,n,
machine first transitions to the state q1 = δ(q0, σ1). The k

th state
the FSM transitions to is then qk = δ(qk−1, σk). The w is an
accepted sequence if qn ∈ F. If qn ∉ F or if for some k, δ(qk−1, σk)
is not defined, the FSM does not accept w. In other words, w is
accepted if and only if there is a path through the graph
induced by M that begins at q0 and ends at qn ∈ F where
consecutive edges in the path have labels that contain
σ1,σ2,...,σn.
In the sequel, we present a general method for constructing a

GRN with a small number of component types to realize an
arbitrary FSM specification. We illustrate the method through
example, using the two-state machine in Figure 1, and show
how the Boolean network model of the GRN implements the
two-state FSM. Additionally, we show that a biomolecular
realization of the GRN modeled by DDEs closely approximates
the Boolean network dynamics for a wide range of physically
realistic parameters. Finally, we show how finite state machines
can be used to engineer complex multicellular behaviors with a
bacterial microcolony edge detection example simulated in
Gro.37

Modeling Gene Regulatory Networks. Gene regulatory
networks are specified by the tuple,

=G G G(,)V U (2)

=G V E E(, ,)V r a (3)

=G U I I(, ,)U r a (4)

where GV is a internal gene network graph, and GU is a signal
graph. In GV, V is a finite set of gene products, Er ⊆ V × V is a
repression relation, and Ea ⊆ V × V is an activation relation. In
GU, U is a finite set of input signals, Ir ⊆ U × (V ∪ Er ∪ Ea) is a
signal repression relation, and Ia ⊆ U × (V ∪ Er ∪ Ea) is a signal
activation relation. Gene regulatory networks are typically
represented as a directed graph, where V and U are sets of

vertexes, Er and Ea are directed repression and activation edges
connecting nodes in V, and Ir and Ia are directed signal
repression and signal activation edges connecting nodes in U to
nodes or edges in GV. For example, in Figure 1B, green, orange,
and purple circles denote gene products, and START, a, and b
denote input signals to the network. Repression edges that
connect nodes denote repression relations between those gene
products. For example, the edge connecting R0 to Ta0 indicates
that R0 represses the production of Ta0. Some signal
repression edges connect nodes to other edges, for example,
a signal repression edge connects a to the edge between Sa and
Ta0. This denotes a biomolecular reaction where signal a
prevents Sa from repressing Ta0. These directed graphs provide
a high level description of the relationship between genes and
input signals in a regulatory network.
Remark For simplicity of interpretation and implementation,

we are mainly concerned with gene networks made of only
repressing relations, and will specify these networks as

=G V E U I(, , ,)r r (5)

where Ea and Ia are empty and therefore not shown.
Biomolecular Parts. Specific biomolecular parts can be used

to implement high level GRN specifications. Figure 2 illustrates

a class of parts for transcription regulation and small molecule
sensing that we use throughout this paper. Our goal here is
simply to show what a minimal set of parts can do. It will
become apparent that the parts used could be replaced with
similar parts, or that the designs we propose could be made
more robust or efficient.
We consider gene networks made of promoters, small

diffusable signal molecules, and repressing transcription factors
with programmable DNA binding domains. Figure 2a shows
two varieties of promoters: constitutive and transcriptionally
regulated. Constitutive promoters are always “on”, expressing

Figure 2. Biomolecular parts for realizing finite state machines: (A)
Transcriptionally regulated and unregulated promoters. Transcription-
ally regulated promoters have specific DNA sequences illustrated as
blue bars that may be bound by domain III on a repressing
transcription factors. Transcriptionally unregulated promoter is
nominally “on”. (B) Transcription factors are made of three primary
components: a transcriptional repression domain; an optional
signaling molecule binding site; and a programmable DNA binding
domain. Sensed molecules are small diffusable signaling molecules that
bind to recognition sites (i.e., a degron) in programmable transcription
factors and catalyze degradation of the transcription factor. Also
illustrated is a fluorescently labeled transcription factor, which we use
to distinguish “state” proteins from “transition” proteins.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665654

their associated gene product at some nominal level. Tran-
scriptionally regulated promoters contain one or more specific
DNA binding sequences upstream of a core promoter. We
consider transcriptionally regulated promoters that are
nominally “on” unless bound by one or more repressing
transcription factors.
Figure 2b shows several transcription factors made by fusing

two or three functional domains: a transcriptional repression
domain (I); a degron domain (II); a DNA binding domain
(III). The construction of such transcription factors is now
routine.16,36,38−40 All transcription factors we consider contain
domains I and III, and special signal sensing transcription
factors contain domain II. Transcription factors might be
fluorescently labeled, and for clarity, we use this labeling to
distinguish “state” transcription factors from “transition”
transcription factors. Small signal molecules (represented as
small circles) bind to and catalyze the degradation of specific
“sensor” transcription factors. Signals may be inducers or cell−
cell signaling molecules that can be enzymatically produced and
exported by the cell and other cells or supplied exogenously. In
this way, signals may be applied exogenously as input to a GRN
or produced internally as an intercellular communication
medium in multicellular systems.
In Figure 3, we depict biomolecular realizations and

corresponding gene regulatory networks for the four types of
components that we interconnect to construct finite state
machines: the transcriptionally unregulated gene, the singly
regulated gene, the doubly regulated gene, and the small molecule
sensor. The first three components represent motifs for gene
regulation via repressing transcription factors, while the fourth
component will be used to sense a small input signal molecule.
The biomolecular parts shown in Figure 2 and networks made
from the composition of these parts can be modeled as Boolean
networks, as illustrated in Figure 3. This is just one possible way
to implement gene regulatory networks, and there are certainly
others. For example, a similar implementation can be imagined
with CRISPR transcription factors.32 Now that we have defined

the syntax of gene regulatory networks and a set of
biomolecular parts to model, we will use Boolean network
dynamics and delay differential equations to provide semantic
interpretation as dynamical systems.

Boolean Network Model. The Boolean network model of
gene regulation is a discrete time dynamical system used to
model course-grained dynamics of gene expression.41,42

Boolean networks were first introduced in this application to
investigate the dynamics of randomly generated gene regulatory
networks and have been used successfully as a descriptive tool,
and more recently (and perhaps surprisingly) as a predictive
model for gene regulation dynamics in natural and synthetic
systems.43−47 In a Boolean network, the expression level of
each gene product or input to the network is in one of two
states: on and of f, (or true and false) denoting high or low
expression level respectively. For brevity, we define the domain
 ≜ {on, of f}. Boolean states are updated at discrete times, and
the expression level of a gene product at time t + 1 is a Boolean
function of the expression level of gene products that affect it at
time t. In general, for gene products Y1, Y2,...,Yn and inputs U1,
U2,...,Um, we denote the state of the gene products and inputs at
time t as Y1

t , Y2
t ,...,Yn

t ∈ and U1
t , U2

t ,...,Um
t ∈ respectively. The

dynamics of this network can then be written as follows:

=

=

⋮

=

+

+

+

Y f Y Y Y U U U

Y f Y Y Y U U U

Y f Y Y Y U U U

(, , ..., , , , ...,) (6)

(, , ..., , , , ...,) (7)

(8)

(, , ..., , , , ...,) (9)

t t t
n
t t t

m
t

t t t
n
t t t

m
t

n
t

n
t t

n
t t t

m
t

1
1

1 1 2 1 2

2
1

2 1 2 1 2

1
1 2 1 2

where f i: n+m → is some Boolean update function for i =
1,2,...,n.
Remark For simplicity, we use the same symbol for the name

of the gene product and the time-varying state of the gene
product. Additionally, we name genes without subscripts, and
gene products and time-varying state with subscripts. In

Figure 3. Components of a biomolecular realization of finite state machines, represented as a GRN, Boolean network equations, and delay
differential equations. In the delay differential equation representation, τ denotes the delay associated with transcription and translation, β is the rate
of dilution associated with cell growth, and Vmax is the maximum rate of production of a gene product. The delay differential equations follow a
Michaeles−Menten form where k1/2 and n are the Michaeles constant and Hill coefficient, respectively.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665655

general, the meaning of these symbols should be clear from
context.
In the Boolean network model, the update function f i

typically corresponds to a mechanistic model of transcriptional
regulation. In the networks we consider, all transcription factors
are repressing, and all promoters are nominally “on” unless
bound by some repressing transcription factor. This means the
transcriptionally unregulated gene motif in Figure 3 always
expresses its gene product. The Boolean network dynamics for
the transcriptionally unregulated gene encodes the sequential
logic for true. In the singly regulated gene shown in Figure 3,
the input U is a repressing transcription factor with a DNA
binding domain that binds to and represses transcription of
gene Y, preventing expression of gene product Y. The Boolean
network dynamics for the singly regulated gene encodes the
sequential logic for NOT. In other words, gene product Y is on
unless the input U was present at the previous time step.
Similarly, the doubly regulated gene in Figure 3, has two inputs
U1 and U2 that may each bind to and repress transcription of
gene Y. The Boolean network dynamics for the doubly
regulated gene encodes the sequential logic for NOR, meaning
the output Y is on unless input U1 or input U2 was present at
the previous time step. Finally, the small molecule sensor in
Figure 3 is a two-gene component that makes use of two
additional parts from Figure 2: a signal molecule a, and a
transcription factor Sa that contains the degron domain (II)
that is sensitive to a. The transcription factor Sa is
transcriptionally unregulated, and in the absence of signal a,
Sa binds to the upstream binding sequence of gene Y and
prevents expression of gene product Y (same as the singly
regulated gene). However, in the presence of a, the signal
molecule quickly binds to Sa and catalyzes its degradation
through fast protein−protein interactions. The resulting
absence of Sa allows gene product Y to be expressed. This
interaction is denoted in the GRN in Figure 3 by a repression
arrow pointing from a to the repression arrow connecting Sa to
Y. Here, at is an input to the network. Since the interaction
between Sa and a is much faster than gene expression, we
consider the state Sa

t to be a function of at,

= ¬S aa
t t

(10)

The Boolean network dynamics of the small molecule sensor
component are then,

= ¬

=

+Y S

a

(11)

(12)

t t

t

1

The advantage of a Boolean network model is that it allows
for the complete enumeration of the state space, which we use
later to show that for any FSM a Boolean network can be
constructed from the components in Figure 3 such that the
dynamics of the Boolean network are isomorphic to the
transition function of the FSM. The disadvantage of such a
model is that it may make unrealistic simplifying assumptions
and lacks the fidelity of a continuous system such as a network
modeled by Hill functions or chemical reaction networks. For
this reason, we also consider a delay differential equation model
of gene expression.
Delay Differential Equation Model. There are some

questions that cannot be addressed assuming the Boolean
network model. Gene expression levels are in general not
binary and depend on factors such as binding affinities of DNA
binding domains and dilution as a result of cell growth and

division. Ultimately, any model of a gene regulatory network
depends on the specific biomolecular components used to
implement the system. However, it is useful to consider a
simple continuous model to examine how well a motif for
implementing finite state machines approximates the discrete
Boolean network model under various kinetic parameters. To
this end, we use DDEs and Hill equations44,48 to model the
dynamics of gene product concentrations in the components
outlined in Figure 3. Notably, we will make the following
simplifying assumptions about the gene network: all regulated
and unregulated genes are built around the same core
promoter, all gene products have the same nominal rates of
translation and transcription, all proteins have approximately
the same rate of nominal dilution and degradation, and all
transcription factors have similar binding affinities and
cooperativity. These are reasonable design assumptions that
greatly reduce the number of parameters in the model.
The DDE for the transcriptionally unregulated gene in

Figure 3 is

β= −
t

Y t V Y t
d
d

() ()max (13)

where Y(t) ∈ is the time-varying concentration of gene
product Y, and Vmax ∈ and β ∈ are tunable parameters to
the model. Vmax is the rate of transcription and translation of
gene Y, and β denotes the cumulative rate dilution due to cell
growth and nominal protein degradation. In steady state,

β
=

→∞
Y t

V
lim ()

t

max

(14)

The DDE for describing the dynamics of the singly regulated
gene component in Figure 3 is

β=
+

−
τ−()t

Y t
V

Y t
d
d

()
1

()
U t

k

n
max

()

1/2 (15)

The first term in this DDE takes the form of a Hill function. As
before, Vmax is the maximum unregulated rate of transcription,
and β is a cumulative diffusion and nominal protein degradation
rate. In addition, U(t) ∈ is the time-varying concentration of
repressing transcription factor U, and k1/2 ∈ , n ∈ , and τ ∈
 are three new tunable parameters. k1/2 is the concentration of
U(t) required to half the rate of transcription of gene Y, and n is
the Hill coefficient for repression. τ denotes the time delay
from transcription of a gene to translation of the gene product.
Similarly, the DDE for the doubly regulated gene component is

β=
+

−
τ τ− + −()t

Y t
V

Y t
d
d

()
1

()
U t U t

k

n
max

() ()1 2

1/2 (16)

This is the same as eq 15 for the singly regulated gene, except
that here the time-delayed concentration of both repressing
transcription factors U1 and U2 are summed in the Hill
function. This assumes that both U1 and U2 bind to the same
DNA binding sequence and have identical effects on the
transcription of gene Y. Finally, two equations model the
dynamics of the small molecule sensor in Figure 3,

β= − +
t

S t V k a t S t
d
d

() (()) ()a p amax (17)

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665656

β=
+

−
τ−()t

Y t
V

Y t
d
d

()
1

()
S t

k

n
max

()a

1/2 (18)

Equations 13 and 17 captures the dynamics of production and
degradation of sensor molecule Sa via signal molecule a. As
before, Vmax is the maximum rate of production of Sa and β is
the cumulative rate of diffusion and nominal degradation.
Additionally, Sa is degraded through fast protein−protein
interactions catalyzed by signal a. The kinetics of these
reactions are lumped into a single rate parameter kp. Equation
18 then models the production of output molecule Y regulated
by repressing transcription factor Sa just as with the singly
regulated gene in eq 15.
General Construction of a GRN from an FSM

Specification. To implement an FSM with a GRN, we define
states and input symbols in terms of the parts and components
illustrated in Figures 2 and 3. A natural choice is to represent a
state in the FSM with a particular gene expression level or set of
gene expression levels and represent input symbols with the
presence or absence of signal molecules that alter the gene
expression level. A sequence of input symbols could then be
encoded as a trajectory over signal concentrations. The GRN
implementation of an FSM machine would then act as a
temporal sequence recognizer over signal concentrations, and
the notion of a final accepting state would encode the logic for
recognizing a particular set of trajectories over input signals.
Specifically, beginning with the FSM,

δ= ΣM Q q F(, , , ,)0 (19)

we generate the gene regulatory network

=V E U I g M(, , ,) ()r r (20)

where V is the set of gene products in the network, Er describes
how the proteins in V are “wired” together as a GRN, U is the
set of input signals to the network, and Ir describes how the
signal molecules affect transcription of the genes in V.
Inputs to the network are a set of signal molecules Σ and an

inducible repressing transcription factor START,

= Σ ∪U {START} (21)

Every gene in the network encodes a repressing transcription
factor, and we break these into three categories: state genes,
transition genes, and sensor genes. For clarity, we will name all the
state genes “Rq” where q is the name of state in the FSM. The
state genes are defined as a set of singly repressed genes,

= | ∀ ∈V q q Q{R }R (22)

For p ∈ Q, we will consider the GRN to be in state p when Rp
is at a low level of expression, and for all q ∈ Q where q ≠ p, Rq
is at a high level of expression.
Similarly, we will prefix the names of all transitions genes

with a “T”. The transition genes are a set of doubly repressed
genes,

σ σ δ σ= | ∀ ∈ ∈ Σ ∃V q q Q q{T , s.t. (,)}T (23)

For q ∈ Q and σ ∈ Σ, we consider the GRN to be following
transition δ(q, σ) when Tσq is at a high level of expression, and
all other transition genes are at a low level of expression.
Finally, all the sensor gene names are prefixed with a “S”.

Sensor genes are a set of transcriptionally unregulated genes,

σ σ= | ∀ ∈ ΣV {S }S (24)

where each signal molecule σ binds uniquely to the sensor
transcription factor Sσ. For σ ∈ Σ, we consider the symbol σ to
be applied to the machine when the signal molecule σ is
present.
The repression edges Er are then made up of edges between

genes. Specifically, let ER,T be the set of repression edges from
state genes to transition genes. For each state q ∈ Q, state gene
Rq represses transition genes Tσq for all σ ∈ Σ.

σ σ= | ∀ ∈ ∈E q q q q{(R , T) R V , T V }R T R T, (25)

Let ET,R be the set of repression edges from transition genes to
state genes. To encode the transition function, for all q,q′ ∈ Q
and σ ∈ Σ where δ(q,σ) → q′, transition gene Tσq should
repress state gene Rq′.

σ σ= | ∀ ∈ ∈E q q q q{(T , R) T V , R V }T R T R, (26)

Let ES,T be the set of repression edges from sensor genes to
transition genes. For each input symbol σ ∈ Σ, sensor gene Sσ
represses transition genes Tσq for all q ∈ Q.

σ σ σ σ= | ∀ ∈ ∈E q q{(S , T) S V , T V }S T S T, (27)

Let IΣ,S be the set of repression edges from signal molecules in
Σ to the edges in ES,T,

σ σ σ σ σ σ= | ∀ ∈ Σ ∈∑I T q T q E{(, (S ,)) , (S ,) }S S T, ,

(28)

Finally, encoding the start state q0, START should repress start
gene Rq0. Then, for (V,Er,U,Ir) = g(M),

= ∪ ∪V V V VR T S (29)

= ∪ ∪E E E Er R T T R S T, , , (30)

= Σ ∪U {START} (31)

= ∪ΣI I q{(START, R)}r S, 0 (32)

Boolean Network Model of the General Construction. In
general, the Boolean network equations for a sensor gene Sσ
and a transition gene Tσq are

σ= ¬σSt t
(33)

= ¬ ∨σ σ
+T R S()q

t
q
t t

,
1

(34)

where Sσ
t , Tσ,q

t , and Rq
t denote the Boolean value of the sensor

gene, transition gene, and state gene, respectively, at time t.
There are two forms of the equation describing the dynamics of
each state gene Rq. When q ≠ q0,

= ¬ ∨ ′σ δ σ
σ

+

′ | ′ →
R Tq

t

q q q
q

t1

{(,) (,) }
,

(35)

and when q = q0,

= ¬ ∨ ′ ∨
σ δ σ

σ
+

′ | ′ →
R T(() START)q

t

q q q
q

t t1

{(,) (,) }
,

(36)

In the absence of any inputs σ ∈ Σ and a low expression of
START, the network reaches steady-state in two time steps.
The expression level at steady state is

=σS ont
(37)

=σT offq
t

, (38)

=R onq
t

(39)

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665657

for all σ ∈ Σ and q ∈ Q. At steady state, the network is not in
any state of the FSM, nor is it following any transitions.
In the Boolean network framework, an input sequence to the

FSM is encoded as a trajectory over signal molecules and the
START gene activity. Let the set of input symbols Σ = {σ1,
σ2,...,σn}, and let w = σc1σc2...σcm ∈ Σ* be an input string to the
FSM M where the index ci ∈ {1,...,n} for i = 1...m. In the
Boolean network model of the GRN g(M), the sequence w
specifies an input trajectory ut = hBN(w,t) for t ∈ , defined as

σ

σ

σ

=

⋮

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

h w t(,)

START

BN

t

t

t

n
t

1

2

(40)

where

=
∈

⎪

⎪⎧⎨⎩
t

START
on, {0, 1}

off, otherwise
t

(41)

and for each σj
t with j ∈ {1,2,...,n},

σ =
∃ = ∈ +

⎪

⎪⎧⎨
⎩

c j c t i ion, s.t. and {2 , 2 1}

off, otherwise
j
t i i

(42)

Exactly one signal or the START gene is active at any particular
time. The START gene is on for two time steps (i.e., from t = 0
through t = 1). Immediately following the START pulse, each
signal σci (for i = 1,2,...,m) is on in sequence for two time steps.
An example trajectory is shown in Figure 4 and discussed later
in detail.

DDE Model of the General Construction. Similarly, the
dynamics of a biomolecular realization of sensor and transition
genes can be writen as a system of DDEs. Where σ(t) is the
concentration of signal molecule σ at time t, and Sσ(t), Tσ,q(t),
Rq(t), and START(t) are the concentrations of sensor,
transition, state, and “start” transcription factors respectively,

β σ= − +σ σt
S t V k t S t

d
d

() (()) ()pmax (43)

β=
+

−σ τ τ σ− + −σ()t
T t

V
T t

d
d

()
1

()q S t R t

k

n q,
max

() () ,
q

1/2 (44)

for each σ ∈ Σ and q ∈ Q. As with the Boolean network
representation, there are two forms of the DDE describing the
dynamics of a state gene. When q ≠ q0,

β=
+

−
′τ τ− + ∑ −σ δ σ σ′ | ′ →⎜ ⎟⎛

⎝
⎞
⎠

t
R t

V
R t

d
d

()
1

()q t T t

k

n q
max

START() ()q q q q(,) (,) ,

1/2

(45)

When q = q0,

β=
+

−
′ τ∑ −σ δ σ σ′ | ′ →⎜ ⎟⎛

⎝
⎞
⎠

t
R t

V
R t

d
d

()
1

()q T t

k

n q
max

()q q q q(,) (,) ,

1/2 (46)

In general, the steady-state of this system of DDEs can be
solved for numerically given the control inputs Sσ(t) = 0 ∀σ ∈
Σ and START(t) = 0. The steady state of the DDEs
qualitatively reflect the steady state of the Boolean network
for a large range of parameters.
As with the Boolean network model, an input sequence to

the FSM is encoded as an input trajectory u(t) = hDDE(w,Δt,t)
for t ∈ and pulse width Δt ∈ , defined as

σ

σ

σ

=

Δ

Δ

Δ
⋮

Δ

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

h w t

t t

t t

t t

t t

(,)

START(/)

(/)

(/)

(/)

DDE

n

1

2

(47)

where

=
∈⎪

⎪

⎧
⎨
⎩t

t
START()

1, [0, 1)

0, otherwise (49)

and for each σj with j ∈ {1,2,...,n}

σ =
∃ = ∈ +

⎪

⎪⎧⎨
⎩t

c j c t i i
()

1, s.t. and [2 , 2 1)

0, otherwise
j

i i

(51)

As with the Boolean network model, exactly one signal or the
START gene is active at any given time. Here, Δt controls for
the input signal pulse width, typically taken to be Δt ≥ τ. In 4,
the pulse width Δt = τ, making the sample input trajectory for
the DDE model match the input to the Boolean network.

Example: Two-State Machine as a Boolean Network. As
an example, Figure 1A depicts a simple two-state FSM
represented as a directed graph, along with a GRN
implementation and a biomolecular realization of the same
machine. This machine has two states, Q = {0,1}. The FSM

Figure 4. Boolean network and DDE trajectories for the two-state
FSM from Figure 1. In this simulation, τ = 1, n = 2, Vmax = β = 20, k1/2
= 0.2, kp = 200. Solid lines denote Boolean network trajectories and
dotted lines denote DDE trajectories. The top three plots show the
input trajectories of a, b, and START that encode the sequence
“aabba”. The control input for the Boolean network and DDE model
are identical. The middle two plots show to the expression level of
state genes R0 and R1 where low expression of Ri corresponds to
being in state i of the FSM. The bottom four plots illustrate the
expression level of transition genes Ta0, Tb0, Ta1, and Tb1, where
high expression of Tσq denotes the transition δ(q, σ) in the FSM.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665658

begins in state q0 = 0, and from here, two transitions are
possible. If the next input symbol is an “a”, then the machine
stays in state 0. Conversely, from state 1, and “a” leaves the
machine in state 1, while a “b” moves the machine back to state
0. Since the set of accepting states F consists only of state 1, this
fSM accepts all sequences of “a” and “b” that end in “a”.
In the GRN implementation in Figure 1B, the state 0 is

represented by the low expression of gene R0, and the state 1 is
represented by the low expression of gene R1. Modeled as a
Boolean network, the equations describing the dynamics of this
GRN are

= ¬ ∨ ∨+R T T(START)t
b
t

b
t t

0
1

,0 ,1 (52)

= ¬ ∨+R T T()t
a
t

a
t

1
1

,0 ,1 (53)

= ∧ ¬+T a Ra
t t t
,0

1
0 (54)

= ∧ ¬+T b Rb
t t t
,0

1
0 (55)

= ∧ ¬+T a Ra
t t t
,1

1
1 (56)

= ∧ ¬+T b Rb
t t t
,1

1
1 (57)

Figure 4 shows the Boolean network and DDE trajectories for
this GRN given the input sequence “aabba”. In the Boolean
network, the initial high expression of START at time t = 0
through t = 1 results in a low expression of R0 during time t = 1
through t = 2, denoting the state q0 = 0 in the FSM. Since every
transition gene Tσq is repressed by both state gene Rq and
sensor gene Sσ, low expression of Rq at time t means that the
expression level of Tσq at time t + 1 is sensitive to signal σ at
time t. Specifically, from eqs 52−57, when R0 is of f,

=+T aa
t t
,0

1
(58)

=+T bb
t t
,0

1
(59)

When the signal a is present at time t = 2, repression is
temporarily relieved on transition gene Ta0 at time t = 3. The
high expression of Ta0 indicates transition δ(0,a) in the FSM.
In general, the presence of an input signal coinciding with the
repression of a state gene determines which transition gene will
be active at the following time step. Transition gene Ta0
represses state gene R1 (state 1 in the FSM) at time t = 4,
leaving transition genes Ta1 and Tb1 sensitive to signal
molecule a. Since signal a is still active at time t = 4, Ta1 is
expressed at time t = 5 and R1 is again repressed at time t = 6
(in the FSM, δ(1,a)→1). This process is repeated for the
subsequent long pulse of signal b and short pulse of signal a
(encode two “b” input symbols followed by an “a”). After the
final pulse of signal a is supplied, the GRN arrives in the final
accepting state, and R1 is repressed at time t = 12. In this
example the transition function δ was defined for all
combinations of input symbols and states; however, as shown
in the Supporting Information, if the simulation were to
continue absent of input signals, or if an input symbol was
provided that did not correspond to a valid transition, the
Boolean network model of this GRN would return to its initial
steady state in two time steps.
Here, assuming a Boolean network model, the set of input

sequences to the two-state FSM are exactly the set of input
sequences that end in an accepting state in the GRN realization
of the two-state FSM. In computer science, given two models

of computation, if behavior of any machine constructed in one
model can be recapitulated with a machine constructed in the
other model, we say that one model is simulated by the other. In
fact, given any FSM the general construction can be used to
design a GRN that recapitulates the behavior of the FSM. In
other words, assuming a Boolean network model, GRNs
simulate FSMs.
Theorem 1. Given a f inite state machine M = (Q, Σ, δ, q0, F),

the gene regulatory network (V, Er, U, Ir) = g(M) simulates M
when modeled as a Boolean network.
Additionally, because any Boolean network can be simulated

by an FSM, any gene regulatory network modeled as a Boolean
network is no more or less capable than a finite state machine.
Corollary 1. Modeled as a Boolean network, gene regulatory

networks are computationally equivalent to f inite state machines.
A precise definition of simulation, and proofs for Theorem 1

and Corollary 1 are provided in the Supporting Information.
Example: Two-state Machine as a System of DDEs. As

mentioned previously, gene expression levels are, in general,
not binary. In order to assess continuous effects such as
production, dilution, and degradation rates, and binding
affinities, we model the GRN as a system of delay differential
equations. The equations describing the continuous dynamics
of the biomolecular realization in Figure 1C are

β= − +
t

S t V k a t S t
d
d

() (()) ()a p amax (60)

β= − +
t

S t V k b t S t
d
d

() (()) ()b p bmax (61)

β=
+

−
τ τ− + −()t

T t
V

T t
d
d

()
1

()a S t R t
k

a,0
max

() () ,0
a 0

1/2 (62)

β=
+

−
τ τ− + −()t

T t
V

T t
d
d

()
1

()b S t R t
k

b,0
max

() () ,0
b 0

1/2 (63)

β=
+

−
τ τ− + −()t

T t
V

T t
d
d

()
1

()a S t R t
k

a,1
max

() () ,1
a 1

1/2 (64)

β=
+

−
τ τ− + −()t

T t
V

T t
d
d

()
1

()b S t R t
k

b,1
max

() () ,1
b 1

1/2 (65)

Here, we use the same time delay τ, rate parameters Vmax, β,
and kp, and Hill parameters k1/2 and n throughout the system.
This is a sensible choice assuming all genes use the same core
promoter, and all transcription factors use the same repression
domain and carefully tuned DNA binding domains. A sample
trajectory of this system is shown in Figure 4. Choosing τ = 1
allows direct comparison to the Boolean network trajectory
with the same control input. In an experimental system, the
stepwise constant input could be approximated by washing
media across cells in a microfluidic device. For the other
parameters, k1/2 = 0.2, kp = 200, and Vmax, β, and n were varied.
In Figure 4 the DDE simulations qualitatively track the

trajectories of the Boolean network model. Initially both DDE
simulations track quite well. However, by time t = 6 the
behavior of the DDE model for n = 2 and Vmax = β = 20 appears
to lag compared to the ideal Boolean network model, and by
time t = 12, the DDE model appears to be lagging by nearly a

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665659

half time unit. Additionally, the maximum amplitude of the
gene expression levels decreases over time, and this is
particularly evident with the transition genes. By comparison,
the DDE model for Vmax = β = 100 and n = 2.5 tracks the
Boolean network model without significant lag or change in
maximum amplitude of expression. There are many methods
for improving the behavior of the DDE model. One possible
solution is to re-engineer the finite state machine. Other FSMs
may accept the same language, and result in a different GRN
that is more robust to the same input. In general, we would like
to know, given an FSM and GRN implementation of that FSM,
how robust is the GRN implementation to changes in the
parameters Vmax, β, n, k1/2, and τ.
DDEs Approximate the Behavior of the Boolean

Network. One method for examining how well the behavior
of the DDE model approximates the ideal Boolean network
model is to simply compare the state of each model after
applying a prescribed input. To illustrate this method, we
introduce a new example, the modulo-two pulse counter. The
finite state machine encoding the modulo-two pulse counter is
shown in Figure 5A. There are two input symbols to this
machine, Σ = {a, ε}, and the machine accepts all sequences of
input symbols that end in an ε. Viewed another way, any
accepted input sequence can be split into a sequence of
contiguous a symbols interrupted by sequences of contiguous
“ε” symbols. In this way, an accepted input sequence consisting
of an even number of contiguous a sequences should end in
state 0, while an accepted input sequence consisting of an odd
number of continuous a sequences should end in state 2. The
GRN implementation of this machine is shown in Figure 5B. If
we imagine a biomolecular implementation where signal

molecule ε is available except in the presence of the input
signal a, this machine counts discrete pulses of a modulo two.
The Boolean network model of the GRN in Figure 5B

simulates the FSM shown in Figure 5A. Initially, input signal a
is absent and signal ε is present, all state genes are on, and all
transition genes are of f. At time t = 0, the START gene is on,
leading to the repression of R0 at time t = 1. The machine then
transitions between states 0 through 3 according to the
prescribed pulses of input signal a. Figure 5C illustrates a few
sample trajectories of the DDE model against the trajectory
produced by the ideal Boolean network model for an input of
five pulses of equal duration of signal molecule a followed by
signal molecule ε. In these trajectories, β = Vmax, τ = 1, k1/2 =
0.2, and Vmax and n were varied.
Intuitively, for a fixed τ, increasing Vmax and β will improve

the dynamic response of the DDE model, and increasing the
Hill coefficient n results in a sharper sigmoidal response. This is
reflected in Figure 5C where the DDE model for Vmax = β =
100 and n = 2.5 track the ideal Boolean network trajectory
more closely than the model where Vmax = β = 20 and n = 2.
Additionally, varying k1/2 affects the sensitivity of expression to
upstream transcription factors. The duration of the input pulse
may also be increased relative to τ. For example, the control
input shown in Figure 5C applies START followed by five
pulses of the input signal a according to a square wave with
pulse width of Δt = 2. A precise value for τ may not be known,
and in networks like the modulo-two pulse counter, more
reliable performance may be achieved by allowing the network
to settle into a periodic orbit before changing inputs.
To quantitatively measure the effects of these parameters, the

following two metrics compare the state of gene expression at a

Figure 5. Modulo-two pulse counter machine described as (A) a directed graph representa-tion of a finite state machine, (B) a gene regulatory
network. In the GRN representation, an unspecified mechanism makes the ε signal available except in the presence of the a signal. (C) Boolean
network and DDE trajectories for the modulo-two pulse counter machine specified by the GRN. In this simulation, τ = 1, k1/2 = 0.2, and β = Vmax.
Vmax and n are varied, with larger values of Vmax and n resulting in trajectories that more closely follow the ideal Boolean network trajectories.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665660

fixed time after applying a control input in a DDE model to the
ideal Boolean network. Where R̂q(t) and Rq(t) are the values of
expression for gene Rq in the DDE model and Boolean
network model respectively,

∫=
Δ

| − ̂ |∈
Δ

Δ
e

t
R t R t tmax

2
() () dq Q

t

t

q qavg
12

12.5

(66)

=
<

≥⎪
⎪⎧⎨
⎩

e
e

e

0, 1/2

1, 1/2thresh
avg

avg (67)

Equation 66 describes error eavg, which is the L∞ norm on the
average error eq 66 takes the maximum average error eavg,
between the DDE model and Boolean network model for the
gene products Rq for all q ∈ Q for half a pulse width following
the five pulses of the input signal a. In Figure 5, eavg the
maximum average difference between the DDE model and
Boolean network model for gene products R0, R1, R2, and R3 on
the time interval t = 24 to t = 25. Equation 67 digitizes this
error with a threshold of 1/2 as ethresh. Figure 6 shows the

average error and thresholded error over a range of parameters
for the pulse counter machine given Vmax = β and τ = 1, and
nominal values of Δt = 20, Vmax = β = 10, and k1/2 = 0.3. The
figure shows that for this machine, long pulse widths and larger
values of Vmax and β result in less error for all values of n, and
that for smaller values of n, there is an optimal value of k1/2 near
0.3.

FSM Framework in a Cellular Information Processing
Context. In the previous two examples, finite state machines
were shown as complete circuits. Many synthetic and naturally
occurring biomolecular circuits have been developed and
characterized, and in the larger context of cellular information
processing, finite state machines may be used to specify the
logical control that wires together a broad array of biomolecular
sensor and effector circuits. This strategy may be an intuitive
way to design multicellular behaviors. To illustrate this concept,
we present a specification for a microcolony edge detection
circuit built around finite state machine control logic, and
implemented as a GRN.
Figure 7A depicts a specification for a microcolony edge

detection circuit. The figure shows the information flow
between the control logic modules (labeled “wave generator”,
“edge detection”, and “toggle switch”), and biomolecular
sensors and effectors (labeled “stochastic pulse generator”,
“band pass filter”, and “timer”). Each control module is
specified by a finite state machine. Here we amend the notion
of an FSM A = (Q, Σ, δ, q0, F) to include a finite set of output
symbols Λ and a multivalued output function,

γ × Σ → ΛQ: (68)

On the arrival of each input symbol σ, when the FSM is in state
q ∈ Q, in addition to following transition δ(q, σ) → q′ the
machine emits output symbol λ = γ(σ,q) with q′ ∈ Q and λ ∈
Λ. This is similar to the operation of a type of a finite state
machine called a Mealy machine.49 As with input symbols, the
biomolecular realization of an output symbol is the
upregulation of a transcription factor, or enzymatic production
of an inducer or signaling molecule that may be exported from
the cell. In this way, output symbols are a medium for
intercellular or intracellular communication.
For each control module in Figure 7, the state transition map

δ(q,σ) → q′ and output map γ(q,σ) → λ are represented as a
set of directed edges labeled σ/λ connecting node q to node q′.
If there is no output symbol λ ∈ Λ associated with a state
transition δ(q,σ) → q′, then the edge is simply labeled σ. For
brevity, if multiple input symbols, say σ1 and σ2 ∈ Σ result in
the same transition from state q to q′, the input symbols are
enumerated as σ1|σ2 in the edge label. Similarly, if the output
function γ(q,σ) is multivalued, say γ(q,σ)→ λ1 and γ(q,σ)→ λ2,
the output symbols are enumerated as λ1 and λ2. For example,
in the wave generation module of Figure 7A the edge labeled
ε0|k/(emit) specifies the transition function,

δ ε →Q Q(,)0
0 0

0
0

(69)

δ →Q k Q(,)0
0

0
0

(70)

and output function γ is defined as,

γ →Q k(,) emit0
0

(71)

The biomolecular realization of this specification is that signals
ε0 and k both leave the system in state Q0

0, however a transition
on signal k results in the upregulation of the emit signaling
molecule.
In operation, the wave generator, edge detection, and toggle

switch control logic modules in Figure 7A act in parallel with a
stochastic pulse generator, a concentration band-pass filter, and
a timer through named communication channels. We consider
the emit output symbol to be an intercellular communication
channel, and all other output symbols are intracellular. In a

Figure 6. Average error and threshold error for the modulo-two pulse
counter illustrated in Figure 5. Error metrics (eqs 66−67) compare the
state of the DDE model to the state of the ideal Boolean network
model. Error is computed following a control input of five pulses of
signaling molecule a. The heat map shows the error for varying Hill
coefficient n over a range of values for k1/2, log Vmax, and input pulse
width Δt, given τ = 1 and β = Vmax. Nominally τ = 1, Δt = 20, Vmax = β
= 10, and k1/2 = 0.3. Zero error means that the DDE model and
Boolean network model end in the same state, while an error of one
means there is maximal error between models. In this example,
increasing pulse width Δt, the rate of production and degradation
dynamics Vmax and β, or the Hill coefficient n, improves performance.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665661

biomolecular realization, the emit symbol can be implemented
as a diffusable signaling molecule that is exported from the cell.
The intuition behind this design is that at a stochastic rate, any
cell in the microcolony can emit a pulse of a diffusable signaling
molecule that is sensed and relayed by neighboring cells. By
sensing the local concentration of signaling molecules a short
time after relaying a wave, a cell can determine whether or not
it is on the edge of a microcolony. Cells that detect a high local
concentration of signaling molecules have many close
neighbors that relayed a wave recently, and thus not on the
edge of the microcolony. Alternatively, cells that detect a
relatively low concentration of signaling molecules have fewer
neighbors, indicating that the cell is on the edge of the
microcolony. When a cell detects that is it on the edge of a
microcolony, it goes into a RFP producing state. When the cell
no longer senses that it is on the edge of a microcolony, it stops
production of RFP. This high-level specification was
implemented in the 2D simulation environment Gro, robustly
producing the red ring colony phenotype illustrated in Figure 7.
More detailed discussion of the specification and Gro
implementation are available in the Supporting Information.
The high level specification in Figure 7 can be refined by

replacing finite state machines with gene regulatory networks,
and specifying sensors and effectors as input/output modules.
Figure 8 illustrates how the GRN implementations of the
logical control modules are interconnected with sensors and
effectors. The wave generator, edge detection, and toggle switch

FSMs are modular components that realized as three distinct
GRNs. The stochastic pulse generator, band-pass filter, and
timer sensors and effectors are biomolecular modules that take
a signaling molecule or transcription factor as input, and
produce a signaling molecule or transcription factor as output.
Transition genes in the FSMs are used as input to sensors and
effectors, and the output of sensors and effectors are then wired
to the production of signals in the GRN realizations of the
FSMs.

Discussion. We showed that any finite state machine M can
be implemented as a gene regulatory network g(M) made
entirely of nominally “on” repressing transcription factors. We
presented this result in the context of a Boolean network model
of gene regulatory networks, where finite state machines are
computationally equivalent to gene regulatory networks.
Furthermore, we described a construction for arbitrary finite
state machines with a set of simple biomolecular parts. We
presented a delay differential equation model for the
biomolecular construction, and showed through example how
the DDE model can be compared to the ideal Boolean network
model using a metric induced by the L∞ norm. Additionally, we
showed that the behavior of the DDE model is close to the
behavior of the Boolean network model over a range of
physically relevant parameters. Finally, we applied our frame-
work to a bacterial microcolony edge detection example, using
a Gro simulation to show that our approach can be used in a
more general cellular information processing context to

Figure 7. Finite state machine specification and snapshots from a Gro simulation of the bacterial microcolony edge detection circuit. (A) The edge
detection circuit consists of three asynchronous and parallel finite state machines and three sensor/effector modules based on existing biomolecular
circuits. The stochastic pulse generator is a source of genetic noise, the band-pass filter responds to middle and high concentrations of a diffusable
emit signal, and the timer emits an intercellular signal at times t1 and t2 after receiving a pulse of the reset signal. (B) A homogeneous microcolony
grows from a single cell. As the microcolony grows, cells stochastically begin a “wave”. Cells relay the wave and measure the local concentration of
the diffusable emit signal after a short refractory period, to determine whether a cell is in the middle or on the edge of a microcolony. Cells on the
edge move to a RFP producing state, while cells in the middle relax to a non-RFP producing state.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665662

implement asynchronous logical control interfacing with a set
of biomolecular sensors and actuators.
Our results may have implications to understanding the

biology of cells, possibly suggesting a new way to relate cell
state to observed patterns of gene expression, and more
generally, hinting at the computational power and limitations of
cells. Assuming gene expression dynamics are approximately
binary, a single cell can recognize any sequence of molecular
inputs that can be represented as a regular expression; however,
no arrangement of a gene regulatory network can enable a
single cell to recognize more complex sets of sequences such as
those specified by context-free or recursively enumerable
languages. This means, for example, that a single cell can be
programmed to compute the sum of two integers represented
by signal pulses; however, a single cell could not, without some
extra internal memory of variable size, compute the product of
two arbitrary integers, or recognize when an arbitrary sequence
consists of an equal number of a and b pulses. This observation
suggests that multicellular organisms may have evolved
precisely because doing so enables a more powerful form of
computation. Indeed, given single cells that implement finite
state machines, it is a small theoretical step to arrive at
multicellular systems that are capable of more complex
computation. L-systems, for example, are a cell-based model
for plant development in which cells have finite state that when

taken together is computationally equivalent to pushdown
automata.50 Furthermore, a growing, dividing, linear arrange-
ment of cells such as cyanobacteria could hypothetically
implement a Turing tape machine. In future work we will
more carefully explore the computational power and limitations
of multicellular systems in more detail.
Our gene regulatory network and biomolecular constructions

were optimized for clarity and simplicity of parts and not for
performance. Other gene regulatory network topologies and
biomolecular implementations may perform more robustly,
consist of fewer biological parts, or be otherwise better suited
for a particular task. For example, the CRISPR system might be
used to implement state and transition transcription factors,32,40

or a system utilizing recombinase and genome editing may
result in greater state stability.51 Incorporating new parts, such
as activators, analog sensors, or molecular insulation
devices,52,53 could also improve performance. Additionally,
many different finite state machines may encode the same
control logic or recognize the same language over input
symbols. It is certainly the case that given a desired high level
behavior, some finite state machines result in a more robust
biomolecular implementation that others. Our metric for
comparing the behavior of a continuous time and continuous
space system to an ideal Boolean network model can be used to
explore and optimize over the space of possible machines. More

Figure 8. Gene regulatory network realization of the bacterial microcolony edge detection circuit depicted in Figure 7. Finite state machine modules
are separated by gray modules. The upper left module encodes the wave generator, the module below it encodes the toggle switch, and the module
in the upper right encodes the edge detection FSM. The bottom module contains specifications for the unrealized sensors and effectors. Sensor and
effector specifications consist of an optional input signal, output signal, and a description of the behavior of the module. Red lines depict how genes
in the finite state machines are wired to sensors, and blue lines depict how sensors are wired to signals. The purple cloud around emit indicates that
emit is an external diffusable cell−cell signaling molecule; all other signals are considered internal.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665663

detailed analysis of a differential equation model could be done,
but the issues addressed in such an analysis really depend on
the actual implementation.

■ METHODS
All Boolean network and DDE simulations are performed in
Mathematica Version 8.0,54 with numerical solver NDSolve.
The microcolony edge detection example was simulated in Gro,
Version beta.4.37 Mathematica and Gro files are available upon
request.

■ ASSOCIATED CONTENT
*S Supporting Information
Proofs for Theorem 1 and Corollary 1 and a detailed
description of the operation of the microcolony edge detection
circuit. This material is available free of charge via the Internet
at http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: koishi@uw.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported in part by National Science
Foundation (NSF) grant 1317653. The authors thank David
Soloveichik for useful discussion.

■ REFERENCES
(1) Lawrence, P. A. (1992) The Making of a Fly: The Genetics of
Animal Design, Blackwell Scientific Publications Ltd., Hoboken, NJ.
(2) Bonasio, R., Tu, S., and Reinberg, D. (2010) Molecular signals of
epigenetic states. Science 330, 612−6.
(3) Feng, S., Jacobsen, S. E., and Reik, W. (2010) Epigenetic
reprogramming in plant and animal development. Science 330, 622−7.
(4) Inbar-Feigenberg, M., Choufani, S., Butcher, D. T., Roifman, M.,
and Weksberg, R. (2013) Basic concepts of epigenetics. Fertil. Steril.
99, 607−15.
(5) Hopcroft, J. E.; Motwani, R., and Ullman, J. D. (2007)
Introduction to Automata Theory, Languages, and Computation,
Pearson/Addison Wesley, Boston.
(6) Minsky, M. L. (1967) Computation: Finite and Infinite Machines,
Prentice Hall, Upper Saddle River, NJ.
(7) Chomsky, N. (1956) Three models for the description of
language. IEEE Trans. Inf. Theory 2, 113−124.
(8) Moore, E. F. (1956) Gedanken-experiments on sequential
machines. Automata Studies 34, 129−153.
(9) Rabin, M. O., and Scott, D. (1959) Finite Automata and their
decision problems. IBM J. Res. Dev. 3, 114−125.
(10) Burks, A. W., and Wang, H. (1957) The logic of Automata−Part
I. J. ACM 4, 193−218.
(11) Minsky, M. L. (1961) Recursive unsolvability of Post’s problem
of ”tag” and other topics in theory of turing machines. Ann. Math. 74,
437−455.
(12) McCulloch, W. S., and Pitts, W. (1943) A logical calculus of the
ideas immanent in nervous activity. Bull.f Math. Biol. 52, 99−115.
(13) Kleene, S. C. (1951) Representation of Events in Nerve Nets and
Finite Automata, Rand Corporation, Santa Monica, CA.
(14) Wieland, M., and Fussenegger, M. (2012) Engineering
molecular circuits using synthetic biology in mammalian cells. Annu.
Rev. Chem. Biomol. Eng. 3, 209−34.
(15) Miyamoto, T., Razavi, S., DeRose, R., and Inoue, T. (2012)
Synthesizing biomolecule-based Boolean logic gates. ACS Synth. Biol.
2, 72−82.

(16) Lohmueller, J. J., Armel, T. Z., and Silver, P. A. (2012) A tunable
zinc finger-based framework for Boolean logic computation in
mammalian cells. Nucleic Acids Res. 40, 5180−5187.
(17) Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011)
Engineering modular and orthogonal genetic logic gates for robust
digital-like synthetic biology. Nat. Commun. 2, 508.
(18) Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000)
Construction of a genetic toggle switch in Escherichia coli. Nature 403,
339−42.
(19) Becskei, A., Seŕaphin, B., and Serrano, L. (2001) Positive
feedback in eukaryotic gene networks: Cell differentiation by graded to
binary response conversion. EMBO J. 20, 2528−35.
(20) Hasty, J., McMillen, D., and Collins, J. J. (2002) Engineered
gene circuits. Nature 420, 224−230.
(21) Bonnet, J., Subsoontorn, P., and Endy, D. (2012) Rewritable
digital data storage in live cells via engineered control of
recombination directionality. Proc. Natl. Acad. Sci. U.S.A. 109, 8884−9.
(22) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss,
R. (2005) A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130−4.
(23) Ellis, T., Wang, X., and Collins, J. J. (2009) Diversity-based,
model-guided construction of synthetic gene networks with predicted
functions. Nat. Biotechnol. 27, 465−71.
(24) Siuti, P., Yazbek, J., and Lu, T. K. (2013) Synthetic circuits
integrating logic and memory in living cells. Nat. Biotechnol. 31, 448−
52.
(25) Danino, T., Mondragoń-Palomino, O., Tsimring, L., and Hasty,
J. (2010) A synchronized quorum of genetic clocks. Nature 463, 326−
30.
(26) You, L., Cox, R. S., Weiss, R., and Arnold, F. H. (2004)
Programmed population control by cell−cell communication and
regulated killing. Nature 428, 868−71.
(27) Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A.,
Levskaya, A., Marcotte, E. M., Voigt, C. A., and Ellington, A. D. (2009)
A synthetic genetic edge detection program. Cell 137, 1272−81.
(28) Liu, C., Fu, X., Liu, L., Ren, X., Chau, C. K. L., Li, S., Xiang, L.,
Zeng, H., Chen, G., Tang, L.-H. H., Lenz, P., Cui, X., Huang, W., Hwa,
T., and Huang, J.-D. D. (2011) Sequential establishment of stripe
patterns in an expanding cell population. Science 334, 238−41.
(29) Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust
multicellular computing using genetically encoded NOR gates and
chemical ‘wires’. Nature 469, 212−5.
(30) Regot, S., Macia, J., Conde, N., Furukawa, K., Kjelleń, J., Peeters,
T., Hohmann, S., de Nadal, E., Posas, F., and Sole,́ R. (2011)
Distributed biological computation with multicellular engineered
networks. Nature 469, 207−11.
(31) Lu, T. K., Khalil, A. S., and Collins, J. J. (2009) Next-generation
synthetic gene networks. Nat. Biotechnol. 27, 1139−50.
(32) Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman,
J. S., Arkin, A. P., and Lim, W. A. (2013) Repurposing CRISPR as an
RNA-guided platform for sequence-specific control of gene expression.
Cell 152, 1173−83.
(33) Beerli, R. R., and Barbas, C. F. (2002) Engineering polydactyl
zinc-finger transcription factors. Nat. Biotechnol. 20, 135−41.
(34) Moscou, M. J., and Bogdanove, A. J. (2009) A simple cipher
governs DNA recognition by TAL effectors. Science 326, 1501.
(35) Li, Y., Moore, R., Guinn, M., and Bleris, L. (2012) Transcription
activator-like effector hybrids for conditional control and rewiring of
chromosomal transgene expression. Sci. Rep. 2, 897.
(36) Khalil, A. S., Lu, T. K., Bashor, C. J., Ramirez, C. L., Pyenson, N.
C., Joung, J. K., and Collins, J. J. (2012) A synthetic biology framework
for programming eukaryotic transcription functions. Cell 150, 647−58.
(37) Jang, S. S., Oishi, K. T., Egbert, R. G., and Klavins, E. (2012)
Specification and simulation of synthetic multicelled behaviors. ACS
Synth. Biol. 1, 365−374.
(38) Garg, A., Lohmueller, J. J., Silver, P. A., and Armel, T. Z. (2012)
Engineering synthetic TAL effectors with orthogonal target sites.
Nucleic Acids Res. 40, 7584−7595.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665664

http://pubs.acs.org/
mailto:koishi@uw.edu

(39) Havens, K. A., Guseman, J. M., Jang, S. S., Pierre-Jerome, E.,
Bolten, N., Klavins, E., and Nemhauser, J. L. (2012) A synthetic
approach reveals extensive tunability of auxin signaling. Plant Physiol.
160, 135−42.
(40) Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A.,
Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H.,
Doudna, J. A., Lim, W. A., Weissman, J. S., and Qi, L. S. (2013)
CRISPR-mediated modular RNA-guided regulation of transcription in
eukaryotes. Cell 154, 442−51.
(41) Kauffman, S. A. (1969) Metabolic stability and epigenesis in
randomly constructed genetic nets. J. Theor. Biol. 22, 437−67.
(42) Thomas, R. (1973) Boolean formalization of genetic control
circuits. J. Theor. Biol. 42, 563−85.
(43) Strogatz, S. H. (2001) Exploring complex networks. Nature 410,
268−276.
(44) de Jong, H. (2002) Modeling and simulation of genetic
regulatory systems: A literature review. J. Comput. Biol. 9, 67−103.
(45) Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002)
Network motifs in the transcriptional regulation network of Escherichia
coli. Nat. Genet. 31, 64−8.
(46) Bornholdt, S. (2008) Boolean network models of cellular
regulation: Prospects and limitations. J. R. Soc. Interface 5 (Suppl 1),
S85−94.
(47) Sadot, A., Sarbu, S., Kesseli, J., Amir-Kroll, H., Zhang, W.,
Nykter, M., and Shmulevich, I. (2013) Information-theoretic analysis
of the dynamics of an executable biological model. PLoS One 8,
e59303.
(48) Weiss, J. N. (1997) The Hill equation revisited: Uses and
misuses. FASEB J. 11, 835−41.
(49) Mealy, G. H. (1955) Method for synthesizing sequential circuits.
Bell Syst. Tech. J. 34, 1045−1079.
(50) Prusinkiewicz, P., and Lindenmayer, A. (1996) The Algorithmic
Beauty of Plants, Springer, New York.
(51) Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., and
Collins, J. J. (2009) Synthetic gene networks that count. Science 324,
1199−202.
(52) Daniel, R., Rubens, J. R., Sarpeshkar, R., and Lu, T. K. (2013)
Synthetic analog computation in living cells. Nature 497, 619−23.
(53) Del Vecchio, D., Ninfa, A. J., and Sontag, E. D. (2008) Modular
cell biology: Retroactivity and insulation. Mol. Syst. Biol. 4, 161.
(54) Wolfram Research, Inc. (2010) Mathematica, Version 8.0,
Wolfram Research, Inc., Champaign, IL.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001799 | ACS Synth. Biol. 2014, 3, 652−665665

